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1 Laboratoire des Propriétés Mécaniques et Thermodynamiques des Matériaux, CNRS,
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Abstract
The polarization waves propagating in a slab-shaped or in a semi-infinite
dielectric medium with spatial dispersion characterized by a volume free-
energy density and by a boundary-surface energy density are studied, taking
into account Maxwell’s equations, in the framework of the Landau–Ginzburg
formalism. It is shown that two independent extrapolation lengths providing for
the required additional boundary conditions need to be specified at each surface
limiting the medium. Complete calculations are performed in the electrostatic
approximation: they provide evidence of the differences between the transverse
in-plane polarized modes (s modes) and the sagittal plane polarized modes
(p modes). True surface modes exist only in the case of negative extrapolation
lengths. A detailed analysis of the symmetry properties of the surface and of
the guided bulk modes in a slab is developed. Finally, our results are compared
with those from previous models describing the boundary conditions in media
where spatial dispersion is present.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The problem of normal modes of vibration in an ionic crystal slab has a long history but
it is still of some concern because of the general interest in the properties of thin films
of various materials. In particular, ferroelectric films have been intensively studied both
experimentally and theoretically (see [1] for example, and references therein) because of their
device applications. So far, the problem of normal modes has been solved for a semi-infinite
ferroelectric only and, as we shall explain later, not completely. It is the aim of this paper
to solve the problem for a slab using the language of Landau theory of phase transitions, to
point out some shortcomings of theories previously elaborated for a semi-infinite ferroelectric

0953-8984/02/081745+19$30.00 © 2002 IOP Publishing Ltd Printed in the UK 1745

http://stacks.iop.org/cm/14/1745


1746 J-P Jardin et al

 

d
x

z

ε1

ε2

x

z

ε
y y

k

k⊗ ⊗

(a) (b)

Figure 1. Schematic diagrams of the systems studied: (a) a dielectric slab; (b) a semi-infinite
dielectric medium.

and to discuss the results in the context of what has already been done for a slab made of
an ordinary ionic crystal. Our model generally relates to dielectric materials showing spatial
dispersion. In principle, it can be used to describe polarization waves in the paraelectric phase
of ferroelectric films about which experimental information concerning the surface properties
is continuously growing. A further generalization could involve the ferroelectric phase.

Our procedure will be purely phenomenological (as is common with ferroelectrics)—that
is to say, we shall consider long-wavelength optical modes only, which will be treated as modes
of the macroscopic polarization P . We shall consider a slab of thickness d (perpendicular to
the z-axis), infinite in the x- and y-directions, and polarization modes propagating in a direction
parallel to the planes of the slab (figure 1). Because of the translation symmetry in the (x, y)
planes, polarization waves are wavelike, i.e. polarization waves are characterized by the two-
dimensional wavevector k(kx, ky)which should satisfy ka � 1 in order to make a macroscopic
description possible (a denotes the lattice constant).

The problem to be solved is that of how the angular frequencies ω of polarization waves
depend on k and how the amplitudes of these waves vary in the direction perpendicular to
the film, i.e. along the z-axis. We begin by formulating the problem in general, i.e. including
the retardation of fields, but solutions will be sought for in the electrostatic approximation,
neglecting the interaction of the polarization waves with the transverse electromagnetic field
of free photons. In other words, we shall not discuss polaritons, and will limit ourselves to
waves with wavevector in the range ω/c � k � a−1. It is well known [2] that in general two
types of mode exist in this case:

(1) Bulk modes (BM) (sometimes called guided—by the surfaces of the film—modes). The
variation of their amplitudes across the film is sinusoidal in character,

(2) Surface modes (SM). Their amplitudes decrease exponentially with increasing distance
into the film from the surfaces.

It should be pointed out that when the slab is surrounded by the same medium on both
sides and if we take the origin of the coordinate system in the middle of the slab, then the plane
z = 0 is the symmetry plane of the problem. Consequently, the components Pi of the normal
modes should be either even or odd with respect to change of z into −z.

Let us now briefly recall how the normal modes of a slab are found in a macroscopic
theory using the so-called permittivity formalism [2]. Maxwell’s equations (in the electrostatic
approximation) completed by the material relation between the displacement vector D and the
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electric field E, are solved under appropriate boundary conditions, i.e.Dz and Ex,y should be
continuous on the slab surfaces. Two qualitatively different situations should be distinguished:
the crystal of which the slab is made is spatially dispersive (i.e. the relation between D and E is
non-local) or it is not. The origin of this qualitative difference is that, without spatial dispersion,
Maxwell’s equations, the continuity of Ex,y and Dz at the surfaces and the permittivity ε(ω)
determine normal modes of the slab unambiguously [3, 4]. If, however, the spatial dispersion
of ε(ω) is taken into account, additional boundary conditions (ABC) are needed for solving the
problem [5]. We shall return to this point later. Without the spatial dispersion, ε(ω) depends
on the frequency only and not on the wavevector. The permittivity of the slab is taken as the
same as that of an infinite (in all three dimensions) crystal (for simplicity we consider a crystal
of cubic symmetry, for which εik = εδik)—that is, in the form

ε(ω) = ε∞ω
2
l − iωγ − ω2

ω2
t − iωγ − ω2

(1)

whereωl andωt are the frequencies of the bulk longitudinal and transverse modes, respectively
(ε∞ stands for the background permittivity at ω � ωt and γ is the damping constant). Let
us choose the direction of k along the x-axis: k(k, 0). Then it follows from Maxwell’s
equations that Py-waves (s polarization) are decoupled from the system of coupled Px- and Pz-
waves (p polarization). Obviously, the Py-waves produce neither volume nor surface electrical
charges, and consequently E is equal to zero everywhere. Hence the corresponding BM have
the frequency ωt [2]. Furthermore, there are no SM in this case.

Let us now turn to p-polarized waves: in addition to two series of BM at frequencies ωl

and ωt , two SM occur [3]. In the case of symmetrical surroundings, the first SM, of lower
frequency, has an even Px-component and an odd Pz-component, and vice versa for the
second SM. The frequencies of these SM lie between ωt and ωl, and in the limit kd � 1
they become practically degenerate. When k → 0 both SM cease to be localized near the
surfaces and, at k = 0, Pz- and Px-waves are completely decoupled: one mode becomes
a pure Pz-wave with a constant amplitude across the slab and a frequency ωl; the other
mode changes into a pure Px-wave with a constant amplitude and a frequency ωt . The
disappearance of SM at k = 0 is a shortcoming of the permittivity formalism which uses
ε(ω) for an infinite crystal and fails to take into account modified physical properties at slab
surfaces.

Microscopic theories (see [6] and references therein) have clearly demonstrated that SM
persist at k = 0 if the modification of forces acting on surface ions is taken into account. It
follows from microscopic theories that two types of SM should be distinguished [7]: SM of the
first type, whose amplitudes decrease slowly with the distance from the surface; and SM of the
second type, whose amplitudes decrease over distances of the order of the lattice constant a.
Obviously, only SM of the first type can be described by a phenomenological macroscopic
theory. These two types of SM are coupled; that coupling, however, can be neglected in the
long-wavelength limit ka � 1 provided that their dispersion branches do not intersect each
other [7]; numerical calculations for very thin films [6, 8] suggest that this is indeed the case.
Another interesting effect which does not come out from a macroscopic theory is the interaction
of SM and BM. That is, by means of a numerical analysis of the microscopic theory [6] the
effect of anticrossing between the dispersion curves of SM and BM of the same symmetry can
be seen; as the frequencies of the two modes of the same symmetry approach one another,
they repel each other and their eigenvectors exchange character. It has been shown that the
changes of frequency and the finite lifetime of SM of the first type due to the interaction with
BM are effects of the order of ka [7]. A detailed review of macroscopic as well as microscopic
theories can be found in [9].
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Let us now discuss how the effect of the spatial dispersion, which in microscopic theories
is taken into account in fact automatically, is usually included in the permittivity formalism. In
this case, ε depends on the three-dimensional wavevector q due to the q-dependence ofωt in (1).
The two-dimensional wavevector k involved is related to q through q = k + qziz , where iz is
a unit vector parallel to the z-axis. If the spatial dispersion is sufficiently small, i.e. qa � 1,
and if we consider the dispersion of ωt in the cubic crystal to be isotropic for simplicity, we
take into account the spatial dispersion simply by replacing ω2

t in (1) by ω2
t (q) = ω2

t +Dq2.
In an infinite crystal, ε(ω, q) relates the field amplitudes of the plane waves to the wavevector
q, i.e., D(ω, q) = ε(ω, q)E(ω, q), where

ε(ω, q) = ε∞ω
2
l +Dq2 − iωγ − ω2

ω2
t +Dq2 − iωγ − ω2

. (2)

This equation expresses a non-local relation between D and E which explains why, in a
spatially dispersive crystal, normal modes can no longer be found from Maxwell’s equations
and the continuity of fields at the surfaces themselves; ABC containing information about the
properties of the surface are needed. Various ABC have been introduced ad hoc (see [10] for
example): either some components of P or the derivatives of Pi or, more generally, a linear
combination of them vanish at the surfaces of the slab. However, it has been shown that,
in the macroscopic theory using the permittivity formalism, new boundary conditions follow
directly from the non-local form of Maxwell’s equations and it is not necessary to construct
a microscopic model of the crystal surface in order to complete the theory [11, 12] of the
SM of the first type. In this theory the influence of the surface is only related to the loss of
translational invariance in the z-direction and a non-local permittivity is obtained by partial
Fourier transformation of ε(ω, q); other effects of the surface are not taken into account.

Instead, we shall follow a procedure commonly used in ferroelectric thin films [1] which
specifies the physical properties of the surface and leads to realistic ABC. This procedure
consists in introducing the spatial dispersion directly in the equations of motion for Pi :

m
∂2Pi

∂t2
+ γ

∂Pi

∂t
+mω2

t Pi − C
{(
∂2Pi

∂x2

)
+

(
∂2Pi

∂z2

)}
= Ei. (3)

These equations follow from the well known kinetic equation

m
∂2P

∂t2
+ γ

∂P

∂t
+
δF

δP
= 0 (4)

restricted to the harmonic part of the Landau free-energy density in the appropriate simplified
form:

F = 1
2

∑
i

{mω2
t P

2
i + C(∇Pi)2} − E · P . (5)

Obviously, for the second-order differential equations, boundary conditions on Pi at the
surfaces are needed [13]. Generalizing the boundary conditions used in [14], we take them in
the form [

∂Pi

∂z
± Pi

δi

]
z=±d/2

= 0. (6)

These ABC result in fact from the variation equations δF/δPi = 0 if the volume energy
density (5) is completed by the surface energy density:

C

2

∑
i

P 2
i (z = −d/2) + P 2

i (z = +d/2)

δi
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which expresses the fact that the polarization energy at the surfaces is different from that of
the bulk. Note that (3) defines a system of coupled equations for Px and Pz. This is because
for k �= 0 the polarization wave Px produces also a component of the electric field Ez acting
on Pz and similarly the polarization wave Pz produces an Ex-component (explicit formulae
forEi can be found in [3]). The coupling between Pz and Px was ignored by Cottam et al [14]
and therefore their results only apply to the case of k = 0 where Pz and Px are decoupled.

In the following section we shall work out in detail the procedure that we have just briefly
described.

2. Theory

We consider an infinite slab of thickness d consisting of the material studied, of cubic symmetry,
in contact with two semi-infinite isotropic dielectric media with dielectric constants ε1 and ε2

independent of the frequency (indeed, one of them or both can be replaced by vacuum), as
shown in figure 1. In the present section we intend to study the propagation of electromagnetic
waves whose wavevector lies in the (x, y) plane, looking for solutions of Maxwell’s equations
in which the components (labelled by i = x, y, z) do not depend of y and are of the following
form:

Ui(r, t) = Ui(z) exp[i(kx − ωt)] with U = E,D,P or H. (7)

The magnetic permeability is assumed to be equal to unity in all three media. We are interested
only in the electromagnetic modes localized in the slab, i.e. for which Ui(z) → 0 when
z → ±∞. As pointed out already in the introduction, these modes can be divided in two
groups: (1) bulk modes (BM) for which the fields sinusoidally oscillate inside the slab; and
(2) surface modes (SM) for which they exponentially decay with increasing distance from
the surface. Finally, as usual, we have to consider two distinct configurations: (i) the case
where the electric field lies in a plane parallel to the slab along the y-axis, which imposes
Ex = Ez = 0, Hy = 0 (s polarization, sometimes defined as TE modes); and (ii) the case
where the electric field lies in the sagittal plane, which imposes Ey = 0, Hx = Hz = 0
(p polarization or TM modes).

In the case of s modes the Maxwell equations

curl(E) = −1

c

∂H

∂t
and curl(H) = 1

c

∂D

∂t
(8)

lead to the following relations:

E′′
y (z)− k2Ey(z) +

ω2

c2
Dy(z) = 0 (9a)

E′
y(z) = −i

ω

c
Hx(z) (9b)

Hz(z) = ck

ω
Ey(z) (9c)

while in the case of p modes we get

kE′
x(z)− ik2Ez(z) + i

ω2

c2
Dz(z) = 0 (10a)

ikDx(z) +D′
z(z) = 0 (10b)

kHy(z) = −ω
c
Dz(z) (10c)

with

D = E + 4πP .
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In equations (9) and (10) we use the notation

�′ = ∂�

∂z
�′′ = ∂2�

∂z2
.

Indeed, outside the slab,

P =



ε2 − 1

4π
E for z > d/2

ε1 − 1

4π
E for z < −d/2.

(11)

In the slab, the total polarization, now labelled P is

PT = Pel + P (12)

where Pel stands for an electronic frequency-independent part:

Pel = ε∞ − 1

4π
E (13)

and where we assume, as pointed out in the introduction, that the frequency-dependent part of
P is solution of a Landau–Ginzburg equation:

m
∂2P

∂t2
+
δF

δP
= 0. (14)

In the above equation, where damping is neglected, m is an inertial positive parameter and F
is the appropriate free-energy density. In view of the required linearization, we consider only
the harmonic part of the free energy which we write as (per unit area)

! = !V +!S (15a)

with

!V =
∫

dx
∫ +d/2

−d/2
F dz (15b)

where

F = A(T )

2
P 2 − E · P +

C

2

[(
∂Px

∂x

)2

+

(
∂Pz

∂z

)2
]

+
C ′

2

[(
∂Px

∂z

)2

+

(
∂Py

∂x

)2

+

(
∂Py

∂z

)2

+

(
∂Pz

∂x

)2
]

+ C ′′ ∂Px
∂x

∂Pz

∂z
+ C ′′′ ∂Px

∂z

∂Pz

∂x
(15c)

and

!S = C

2

[
P 2
x (x, d/2) + P 2

y (x, d/2)

δx+
+
P 2
x (x,−d/2) + P 2

y (x,−d/2)
δx−

+
P 2
z (x, d/2)

δz+
+
P 2
z (x,−d/2)
δz−

]
. (15d)

In the case of a ferroelectric material, the above expression holds for the paraelectric phase
with A = α(T − Tc) with α > 0. In order to study the ferroelectric phase, A would have to
be renormalized; however, due to finite-size effects it would depend upon z, which severely
complicates further calculations. In the following, we neglect the cross gradient terms C ′′ and
C ′′′; in addition we assume thatC ′ = C > 0. Finally, we assume that the surface extrapolation



Polarization waves in dielectric films with spatial dispersion 1751

lengths do not depend on the side considered, i.e. δx+ = δx− = δx ; δz+ = δz− = δz. Notice,
however, that we introduce two independent lengths, the in-plane one (δx = δy in agreement
with the symmetry) and the out-of-plane one δz.

In addition to equation (14), one has to take into account the boundary conditions at
z = ±d/2 arising from the continuity of the appropriate components of the fields and from
the finite-size effects in the energy minimization. These last conditions can be written as[

∂Pi

∂z
± Pi

δi

]
z=±d/2

= 0 (i = x, y, z). (16)

Throughout the rest of this section we shall discuss the p and the s solutions neglecting
the retardation effects (ω/c = 0: electrostatic approximation). Strictly speaking, for very
small |k|-values such an approximation fails, since it assumes that |k| � ω/c. However,
the electrostatic approximation often provides for a large allowed range of physically small
|k|-values (i.e. simultaneously subjected to |kd| � 1, to |kδi | � 1 and to Ck2 � 1) as
the reported data [15] do not exceed a few tens of nm and a few tens of nm2 for |δi | and
for C, respectively; then, with a typical order of magnitude of a few 1013 rad s−1 for ω, the
electrostatic approximation is satisfied for |k| � 10−4 nm−1 while |k| can be considered as
small when it is significantly smaller than 10−2 nm−1. Notice that the following considerations
significantly generalize the content of our preliminary paper [16] concerning only k = 0 modes
in the special case where δ−1

x = 0 and where, consequently, there are only p modes polarized
along z.

Using (7) and (15), equation (14) becomes

(−mω2 + A + Ck2)Pi(z)− CP ′′
i = Ei(z). (17)

The solutions of the form Ei(z) = Ei exp[βz], Pi(z) = Pi exp[βz] are then subject to

Ei = [W(k, ω)− Cβ2]Pi

with

W(k, ω) = A(T )−mω2 + Ck2 = m(ω2
t − ω2) + Ck2 (18)

where we have introduced the bulk transverse frequency ωt .
The polarization modes propagating in the slab are linear combinations of these

exponential solutions subject to the surface boundary conditions.

2.1. s modes

It follows from (9a), (9b) and (18) (with i = y) that

[β2 − k2][W(k, ω)− Cβ2]Py = 0

βEy = 0.
(19)

The solutions with non-zero polarization have to satisfy

β = ±βn (n = 1 or 2) with β1 = |k| and β2 = [W(k, ω)/C]1/2

with, necessarily, E = 0. One easily shows that β1 does not contribute to non-zero solutions.
The allowed values for β2 immediately result from equations (16). They are solutions of

β2δx = − coth[β2d/2] (20a)

or of

β2δx = −tanh[β2d/2]. (20b)

β2 can be a real solution of
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δ<0

δ>0 δ>0

δ<0

x=rd/2

22δδx/d, 
-th(x), 
-coth(x)

22δδx/d, 
-tg(x), 
cot(x)

a) Surface modes b) bulk  modes

x=ud/2

Figure 2. Graphical determination of β (see the text). We have omitted the indices e and o for
even and odd (e relates to coth (or to cot), o relates to tanh (or to tan)). Depending upon the case
studied, δ stands for δx or for δz.

reδx = − coth[red/2] with β2 = re (21a)

or of

roδx = −tanh[rod/2] with β2 = ro. (21b)

Alternatively, β2 can be a purely imaginary solution of

ueδx = cot[ued/2] with β2 = iue (22a)

or of

uoδx = − tan[uod/2] with β2 = iuo. (22b)

These solutions are graphically depicted in figure 2: it appears that real solutions only
exist for δx < 0 (except for β2 = 0, which, as is easily seen, does not contribute to non-
zero solutions). The indices e and o respectively label even and odd modes with respect to
the change z → −z. For the first ones, the polarization is proportional to cosh[rez] (real
solutions → surface modes) or to cos[uez] (imaginary solutions → bulk modes). For the
second ones, the polarization is proportional to sinh[roz] (real solutions → surface modes) or
to sin[uoz] (imaginary solutions → bulk modes). In both cases, the variation versus z of the
polarization is independent of k.

It turns out from (18) that the frequencies of the surface modes can be written as

mω2 = mω2
t − Cr2 + Ck2 (23a)

and of the bulk modes as

mω2 = mω2
t + Cu2 + Ck2. (23b)

One also notices that the electric field cancels everywhere and that for C = 0 there are no
non-zero solutions.

2.1.1. Even modes.
(i) δx < 0. There is always only one even surface mode related to the unique real solution re
of equation (21a) appearing in figure 2. The imaginary solutions connected to ue,p, where the
index p is any positive integer, define an infinite set of even bulk modes.

Indeed, the concept of surface mode is specially meaningful when the required scale for a
significant decrease of the polarization is small compared to d. This condition is satisfied for
|δx | � d , which leads to
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re
∼= 1

|δx |
(

1 + 2 exp

[
− d

|δx |
])

≈ 1

|δx |
mω2

e
∼= mω2

t − C

δ2
x

(
1 + 4 exp

[
− d

|δx |
])

+ Ck2 ≈ mω2
t − C

δ2
x

+ Ck2.

(24)

When |δx | � d , the variation of the amplitude of the polarization in the slab versus z remains
small. In this case one finds

re
∼=
√

2

d|δx | mω2
e

∼= mω2
t − 2C

d|δx | + Ck2. (25)

For the bulk modes, ue,p increases with p. For large p, one finds

ue,p
∼= p2π

d
mω2

e,p
∼= mω2

t + p2 4π2C

d2
+ Ck2. (26)

(ii) δx > 0. There are no even surface modes. There is still an infinite set of bulk modes
labelled by a positive integer p. For large values of p, the expressions (26) remain valid.

2.1.2. Odd modes. (i) δx < 0. There is one surface mode only for |δx | < d/2. When |δx |
increases from below to above d/2, the surface mode transforms into a bulk mode. In any case
there is an infinite set of odd bulk modes.

For |δx | � d , one finds

ro
∼= 1

|δx |
(

1 − 2 exp

[
− d

|δx |
])

≈ 1

|δx |
mω2

o
∼= mω2

t − C

δ2
x

(
1 − 4 exp

[
− d

|δx |
])

+ Ck2 ≈ mω2
t − C

δ2
x

+ Ck2.

(27)

For large values of d/|δx | the frequency of the odd surface mode is nearly equal to
the frequency of the even surface mode. In the general case its frequency, when it exists
(|δx | < d/2), is larger.

For the bulk modes, uo,p increases with p. For large p, one finds

uo,p
∼= (2p ± 1)

π

d
+: |δx | < d/2 −: |δx | > d/2

mω2
o,p

∼= mω2
t + (2p ± 1)2

π2C

d2
+ Ck2.

(28)

(ii) δx > 0. There are never odd surface modes. There is still an infinite set of bulk modes
labelled by a positive integer p. For large values of p, the expressions (28) with the negative
sign remain valid.

The above-discussed behaviour of the whole set of polarization modes at k = 0 is
illustrated in figure 3, which shows the variations of m(ω2 − ω2

t ) versus d calculated for
δx = −3 nm and C = 500 nm2. The chosen value for |δx | agrees with published typical
orders of magnitude [15]. In contrast, we adopted for C a value significantly larger than the
generally admitted one in order to illustrate specific behaviours of the surface modes which
are commented on in the following (see the subsection 2.2.2a).

2.2. p modes

From equations (10a), (10b), (10) and (18) one derives the relations

β(W − Cβ2)Px − ik(W − Cβ2)Pz = 0

ik

(
W +

4π

ε∞
− Cβ2

)
Px + β

(
W +

4π

ε∞
− Cβ2

)
Pz = 0.

(29)
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Figure 3. Variations of m(ω2 − ω2
t ) versus the film width d at k = 0 for the modes showing a

polarization parallel to the film. These variations are calculated forC = 500 nm2, δx = −3 nm. In
the case of Pz-modes the curves represent the variations ofm(ω2 −ω2

l ), assuming the same values
of C and of δz.

This system admits non-zero solutions only if

[β2 − k2][W − Cβ2]

[
W +

4π

ε∞
− Cβ2

]
= 0. (30)

It follows from equation (30) that β has to satisfy β = ±βn, (n = 1, 2, 3), with

β1 = |k| β2 =
[
W

C

]1/2

β3 =
[
W + 4π/ε∞

C

]1/2

. (31)

We seek field components that are linear combinations of exp[±βnz]. More explicitly, it is
convenient to write

Px(z) = ik

β1
(a1e cosh[β1z] + a1o sinh[β1z])

+ (a2e cosh[β2z] + a2o sinh[β2z]) +
ik

β3
(a3e cosh[β3z] + a3o sinh[β3z]). (32)

Pz(z) is derived from equation (29):

Pz(z) = (a1e sinh[β1z] + a1o cosh[β1z])

− i
k

β2
(a2e sinh[β2z] + a2o cosh[β2z]) + (a3e sinh[β3z] + a3o cosh[β3z]). (33)

The indices e and o stand for even and odd, respectively, referring to Px : notice that they
correspond to odd and even components, respectively, when referring to Pz. The components
of the electric field are immediately found from equations (10a) and (10b). Outside the slab
the field components have to be proportional to exp[−|kz|] in order to vanish at infinity: it
then follows from Maxwell’s equations and from equation (11) that the external fields depend
only upon one coefficient on each side. Writing the continuity equations for Ex and Dz and
the boundary conditions of equation (16) for Px and Pz at z = ±d/2, one finally obtains a
set of eight equations which reduce to a homogeneous set of six linear equations for the six
coefficients (a1e to a3o) introduced in equation (32). An implicit expression for the frequencies
of the modes is then obtained through the vanishing of the determinant of a 6×6 matrix M (see
table 1). At this stage, in the general case, numerical calculations are necessary. However,
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Table 1. The expression for the matrix M of the coefficients of the homogeneous system of equations
allowing the calculation of the frequencies. Mez,ox is immediately derived from Mex,oz by changing

cosh into sinh and vice versa. M(2)as is derived from M(1)as by changing sinh into cosh.

M =
[

Mex,oz M(1)as

M(2)as Mez,ox

]
with:

Mex,oz =




(ε1 + ε2)C(k
2 − β2

2 ) cosh [kd/2]

+ 2ε∞C(k2 − β2
3 ) sinh [|k|d/2]

i 8π k
β2

sinh [β2d/2] (ε1 + ε2)
4π
ε∞

|k|
β3

cosh [β3d/2]

|k| cosh [kd/2] + sinh [|k|d/2]
δz

−ik
(

cosh [β2d/2] + sinh [β2d/2]
β2δz

)
β3 cosh [β3d/2] + sinh [β3d/2]

δz

i
(
k sinh [|k|d/2] + k

|k|
cosh [kd/2]

δx

)
β2 sinh [β2d/2] + cosh[β2d/2]

δx
ik
(

sinh [β3d/2] + cosh [β3d/2]
β3δx

)




M(1)as =

 (ε1 − ε2)C(k

2 − β2
2 ) sinh [|k|d/2] 0 (ε1 − ε2)

4π
ε∞

|k|
β3

sinh [β3d/2]
0 0 0
0 0 0




there are considerable simplifications at zero wavevector. For k �= 0, the case of a symmetrical
environment of the slab (ε1 = ε2) can be rather easily studied: the 6 × 6 matrix M splits into
two 3 × 3 matrices Mex,oz and Mez,ox, reflecting the occurrence of two systems of independent
equations related to even and odd modes related to the Px-components, respectively involving
(a1e, a2e, a3e) and (a1o, a2o, a3o). Finally, for small |k|, linear dependences of the frequencies
on |k| can be obtained.

2.2.1. The special case k = 0. In this case, the matrix M has a very simple form which gives
rise to a complete decoupling between the Px- and the Pz-components. More specifically,
even for ε1 �= ε2, M splits into two matrices Mex,oz and Mez,ox. Mex,oz is related to two distinct
sets of modes: even-Px modes with Pz = 0 and odd-Pz modes with Px = 0. Indeed Mez,ox

describes odd-Px and even-Pz modes. The determinant of M, which, in fact, is the product of
the determinants of the two sub-matrices can be written as

-(0) = β2
2β

2
3

(
β2δx + coth

[
β2
d

2

])(
β2δx + tanh

[
β2
d

2

])

×
(
β3δz + coth

[
β3
d

2

])(
β3δz + tanh

[
β3
d

2

])
. (34)

The frequencies are obtained by equating to zero any of the factors appearing in (34): however,
it is easy to show that β2 = 0 and β3 = 0 do not induce non-zero solutions.

Among the remaining factors the first two define the Px-modes (even and odd modes,
related to the factors containing coth and tanh, respectively). The discussion is identical to
the preceding one concerning the s modes at k = 0. Indeed, at zero wavevector one finds a
degeneracy between the Px- and Py-modes.

The two last factors define the Pz-modes (here again, even and odd modes are related to
the factors containing coth and tanh, respectively). The discussion is completely analogous to
the previous one. We just have to make the replacements

δx → δz and mω2
t → mω2

l = mω2
t +

4π

ε∞
.

However, one has to notice that the electric field vanishes in the Px-modes, while Ez =
−4πPz/ε∞ in the Pz-modes. These conclusions can be more easily derived from a direct
examination of equation (29).
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To summarize this subsection, we now have two sets of modes: Px and Pz. Each set
always presents bulk modes and, if the extrapolation length concerned is negative, one or two
surface modes. The intricacy of the frequencies, which are insensitive to the values of ε1 and
of ε2, depends upon the characteristic parameters of the slab. The lowest frequency is always
associated with an even mode. In the case where both δx and δz are negative and show an
absolute value very much smaller than d , the fundamental mode at k = 0 is of even-Px type if
C/δ2

x > C/δ
2
z − 4π/ε∞ and of even-Pz type if C/δ2

x < C/δ
2
z − 4π/ε∞.

2.2.2. Non-zero wavevectors. For k �= 0, there is a coupling between the Px- and the Pz-
components. On the other hand, the frequencies and the variations versus z of the polarization
components now become dependent on ε1 and on ε2.

(a) Symmetrical surroundings: ε1 = ε2 = ε. In this case, as pointed out above, for any
given mode, the two components of the polarization show definite parities opposite to those
of each other. In principle, their dependences on z may show a complicated profile, due to the
occurrence of three hyperbolic and/or trigonometric functions in their expressions; notice that,
strictly speaking, the distinction between surface modes and bulk modes may be incorrect.
However, it is interesting to follow the evolution of the behaviour of the modes defined in the
preceding subsection, when increasing |k| from 0, at least up to moderate values.

Figure 4 shows the variations of m(ω2 − ω2
t ) versus |k| for the four surface modes,

calculated using δx = δz = −3 nm, C = 500 nm2, d = 25 nm, ε = 1, ε∞ = 1. For small
|k|-values (|kd| smaller than about 0.2), one observes that these variations are linear for the
even-Px and the even-Pz modes, while they depend quadratically on k for the odd modes,
as justified below. For large |k|-values, the frequencies become close to each other, and their
variations seem to be monitored by a term which is written asCk2 (as for the TE modes studied
above, where the shift of mω2 is exactly equal to Ck2). Notice that, to simplify the study, we
chose a value of C large enough to prevent the occurrence of guided bulk modes in the interval
separating the surface Px- and Pz-modes and, consequently, to prevent surface–bulk mixing:
this is realized for (C/d2)πε∞ > 1. Of course, this set of parameters does not allow one to
achieve a satisfactory bulk permittivity εB since, as easily shown, 4πδ2/{C(εB − ε∞)} has to
be positive in order to get ω2 > 0. Using a more realistic value for C would not drastically
change the dispersion curves of the surface modes, at least at small |k|.

It follows from figure 4 that the lowest frequency occurs at zero wavevector both for thePx-
and thePy-even branch. The frequencies of thePz-modes are higher because of the depolarizing
field produced by surface charges. Therefore, for a ferroelectric film in which δx = δz, the
spontaneous polarization should develop in the x, y plane. This is valid as long as C/δ2

x >

C/δ2
z − 4π/ε∞. In the case C/δ2

x < C/δ
2
z − 4π/ε∞, the lowest branch is the Pz-even one and

its minimum occurs at k �= 0: a modulated spontaneous polarization should develop along the
z-axis. This would be true only in the idealized situation when the surface charges would be not
compensated due to conductivity of the film or external charges. On the other hand, in a short-
circuited film the Pz-even mode at k �= 0 would show a lower frequency due to the reduction
of the depolarizing field which can be calculated using for instance the method of images [17].

The non-zero component (x or z) of P at k = 0 remains the principal one for moderate
values of |k|. This is illustrated in figure 5 where we have shown the dependences on z of Px
and of Pz associated with the even fundamental surface mode for different values of |k| (with
the same parameters as in figure 4): the profile of Px remains practically unchanged; |Pz|/|Px |
keeps a small value which increases versus |k|. We observe a similar behaviour for the bulk
modes, as shown in figure 6.
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Figure 4. Dispersion curves of the surface polarization modes calculated using the following
values: C = 500 nm2; δx = δz = −3 nm; ε1 = ε2 = 1; ε∞ = 1; d = 25 nm. The small splitting
between the even and the odd Py -modes is not shown.

Figure 5. Mixing with increasing k between the Px - and the Pz-components of a surface mode.
The curves represent the variations versus z of the Px -component and of the Pz-component of
the lowest surface mode (Px at k = 0) for increasing wavevectors (0.001, 0.05, 0.1, 0.15 nm−1)
calculated with C = 500 nm2; δx = δz = −3 nm; d = 25 nm; ε1 = ε2 = ε∞ = 1. The Px -profile
is practically independent of k; the Pz-component, which vanishes at k = 0, increases versus k.
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Figure 6. Mixing with increasing k between the Px -component and the Pz-component of a bulk
mode. The curves represent the variations versus z of the Px -component and of the Pz-component
of one of the bulk modes (Px at k = 0) for increasing wavevectors (0.001, 0.05, 0.1, 0.15 nm−1)
calculated forC = 500 nm2; δx = δz = −3 nm; d = 25 nm; ε1 = ε2 = ε∞ = 1. The Px -profile is
practically independent of k, while the Pz-component, which vanishes at k = 0, increases versus k.

(b) Asymmetrical surroundings: ε2 �= ε1. Except when k = 0, the polarization components
do not show a definite parity any longer. The calculations have to be performed using the
complete 6 × 6 matrix M. Figure 7 shows, in the case of the k = 0 even surface mode, the
compared variations of m(ω2 − ω2

t ) versus |k| for ε2 = 1 and for ε2 = 12 (keeping ε1 = 1 in
both cases).

When ε2 �= ε1, very small values of |k| are sufficient to break the symmetry properties,
as shown in figure 8 which presents the profiles of the principal components of the two lowest
surface modes (k = 0 even-Px and odd-Px modes) calculated with ε1 = 1, ε2 = 12. The
frequencies of these two modes remain extremely close to each other, but their profiles change
drastically when |k| increases, even for small values of |k|. For |k| = 10−3 nm−1, the
even and odd characters are still approximately preserved. This is no longer the case for
|k| = 10−2 nm−1: the polarization is practically confined to one side of the slab (different
sides for the two modes).

(c) Small |k|-values. We have expanded the determinant of M to first order in |k|, which
allowed us to calculate the term linear in |k| in the expressions formω2 relating to the p modes.
This term exactly vanishes for the odd modes (thus confirming the behaviour shown in figure 4).

Let us discuss the results concerning the surface modes when both surface Px-modes
and surface Pz-modes exist, i.e. when both δx and δz are negative. In the case where
|δx | � d, |δz| � d , one finds:

even Px : mω2 = mω2
t − C

δ2
x

+
16π

ε1 + ε2
|δx ||k| + o(k2)

odd Px : mω2 = mω2
t − C

δ2
x

+ o(k2)

even Pz: mω2 = mω2
t +

4π

ε∞
− C

δ2
z

− 16π

ε2∞

ε1ε2

ε1 + ε2
|δz||k| + o(k2)

odd Pz: mω2 = mω2
t +

4π

ε∞
− C

δ2
z

+ o(k2).

(35)
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Figure 7. The influence of an unsymmetrical surroundings upon the dispersion curves. The
variation of m(ω2 − ω2

t ) versus k for the even-Pz (at k = 0) mode is shown for ε1 = ε2 = 1
(symmetrical surroundings) and for ε1 = 1, ε2 = 12 (unsymmetrical surroundings). We use for
the other parameters: C = 500 nm2; δx = δz = −3 nm; d = 25 nm; ε∞ = 1.

Figure 8. Symmetry breaking of the polarization profiles for unsymmetrical surroundings. The
curves represent the variation versus z of the x-components of the two surfacePx -modes, calculated
for: ε1 = 1; ε2 = 12 (other parameters: C = 500 nm2; δx = δz = −3 nm; d = 25 nm; ε∞ = 1).
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In these expressions, we have neglected exponential terms similar to those that appear in (24).
In the opposite case where |δx | � d , |δz| � d, where only even surface modes are present,

one finds

even Px : mω2 = mω2
t − 2

C

|δx |d +
4π

ε1 + ε2
d|k| + o(k2)

even Pz: mω2 = mω2
t +

4π

ε∞
− 2

C

|δz|d − 4π

ε2∞

ε1ε2

ε1 + ε2
d|k| + o(k2).

(36)

2.3. The surface waves of a semi-infinite medium

In order to allow for a more complete comparative discussion, we also sought for surface
modes in a semi-infinite medium assumed to be identical to the slab described above and to
occupy the z < 0 half-space (figure 1). The z > 0 half-space is supposed to be filled with an
isotropic dielectric of dielectric constant ε. Now the energy minimization leads to only one
surface boundary condition (at z = 0), namely[

∂Pi

∂z
+
Pi

δi

]
z=0

= 0 (i = x, y, z; δy = δx). (37)

In complete analogy with the case of a slab, we look for solutions of the form (7) where
the dependences on z of the components of the fields are linear combinations of exponential
functions. However, we have now to satisfy the vanishing of the fields at infinity not only in the
dielectric (z → +∞) but also in the medium (z → −∞). Consequently, taking into account
that the frequencies of the modes have to be real, the exponents of the exponential functions
are required to be real and positive. Here again, one easily finds surface s modes as well as
surface p modes.

s modes. They exist only for δx < 0. They show a zero electric field and a polarization that
decays as exp[rsiz] with a frequency ωsi (k) such that

rsi = 1

|δx | and mω2
si = mω2

t − C

δ2
x

+ Ck2. (38)

This results for the frequency are the same as the values for the s modes in a slab found when
d → ∞ (see equations (24) or (27)).

p modes. In the case k = 0, one should distinguish between the Px-mode and the Pz-mode
as in a slab. The first one behaves in exactly the same way as the s modes just described (at
k = 0). The Pz-mode is deduced from the Px-mode by making the replacements

δx → δz and mω2
t → mω2

l = mω2
t +

4π

ε∞
.

Both modes exist if δx and δz are negative.
At k �= 0, there is a coupling between the Px- and Pz-components. Each one is a linear

combination of three exponentially decaying functions with exponents βnz, where the βn are
respectively given by the three equations (31). Using an approach similar to the detailed one
concerning the slab, we obtain the eigenfrequencies from the vanishing of a determinant of an
appropriate 3 × 3 matrix M∞ (given in table 2). For small k-values this determinant can be
written as

-∞ = [4π + (1 + ε∞)W(0, ω)]
[
β2 +

1

δx

] [
β3 +

1

δz

]

+ 4π

[
1

ε∞

1

β3δz

(
β2 +

1

δx

)
− 1

β2δx

(
β3 +

1

δz

)]
|k|. (39)
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Table 2. The matrix of the coefficients of the homogeneous system of linear equations involved in
the case of a semi-infinite medium.

M∞ =




i 4π
k

β2
−−4π

ε∞
|k|
β3

4π − (1 + ε∞)C(k2 − β2
2 )

ik

(
1 +

1

β2δz

)
β3 +

1

δz
|k| +

1

δz

−
(
β2 +

1

δx

)
ik

(
1 +

1

β3δx

)
i

(
k +

k

|k|
1

δx

)




At k = 0 one recovers the frequencies of the Px-mode and of the Pz-mode, respectively related
to β2 = −1/δx and β3 = −1/δz. Using equation (39), one easily finds the frequencies of the
quasi-Px-mode and of the quasi-Pz-mode for small k:

Px − mode: mω2 = mω2
t − C

δ2
x

+

[
8π

(1 + ε∞)

] |δx |
[1 + 4πδ2

x/C(1 + ε∞)]
|k|

Pz − mode: mω2 = mω2
t +

4π

ε∞
− C

δ2
z

−
[

8π

ε∞(1 + ε∞)

] |δz|
[1 − 4πδ2

z /Cε∞(1 + ε∞)]
|k|.

(40)

Notice that the term linear in |k| differs from the expression derived from equation (35) obtained
for a slab in which |δx | � d , |δz| � d .

Finally, at k = 0, the determinant -∞ vanishes for [4π + (1 + ε∞)W ] = 0. However,
this root does not correspond to a non-zero solution for the fields. In the next section we shall
discuss the nature of the corresponding mode at small |k|.

3. Discussion and comparison with previous results

First, in the case where C = 0, our results expressed in equation (36), for a film, are in
agreement with the theory of surface modes in ionic crystals, whose frequencies are given
by [2]

ε(ω) = −ε1 + ε2

2
coth[kd]

(
1 ±

{
1 − 4

ε1ε2

(ε1 + ε2)2
tanh2[kd]

}1/2
)

(41)

where

ε(ω) = ε∞ +
ω2
p

ω2
t − ω2

= ε∞ω
2
l − ω2

ω2
t − ω2

.

Noticing that

ω2
t = A(T )

m
ω2
p = 4π

m

(
and thus ω2

l = ω2
t +

4π

mε∞

)
(42)

equation (41) leads to equation (36) with C = 0 for small values of |k|.
Let us now compare our results with those obtained by Cottam et al [14] who also used the

Landau–Ginzburg formalism but with the simplifying hypothesis of a scalar order parameter
consisting of a non-specified component of the polarization; thus, they do not take account
of the Maxwell’s equations which, among other consequences, mix the components. For
the s modes we get the behaviour calculated by Cottam et al, as expected, since for the
s modes there is only one non-zero component of the polarization. For the p modes, the
model of Cottam et al cannot predict the fourfold multiplicity of the surface modes, the
splitting between the Px- and the Pz-modes at zero wavevector and the dispersion of the
frequencies versus |k|; however, for large k-values, in our model this dispersion is mainly
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governed by a quadratic term (that is, the variation of mω2 follows the variation of Ck2)
identical in the two models. An important point to be noticed in our approach consists in
the introduction of two independent extrapolation lengths, the in-plane one and the out-of-
plane one, in agreement with the symmetry of the problem. Finally, our model could be
developed beyond the electrostatic approximation while such a generalization has no meaning
in the treatment of Cottam et al. However, calculations including retardation effects are
rather tedious: anyway, it would be interesting to investigate whether the propagating modes
disappear at small enough |k|-values, as observed in the absence of gradient terms in the free
energy [4].

It is also of interest to compare our results with those obtained by Maradudin and
Mills [12] using the dispersive permittivity formalism. First, obviously, for an infinite medium
in the absence of any boundary surface, our equations of motion lead to a wavevector-
dependent permittivity whose form is identical to the one proposed by those authors (the
parameter C/m, related to the gradient term in our expression of the free energy, has to
be identified with the parameter D appearing in equation (2) of section 1). To progress in
the comparison we now restrict ourselves to the case of a semi-infinite medium described
in section 2.3, since Maradudin and Mills did not study the case of a slab. In both
models, the solutions can be expressed as linear combinations of three identical exponential
functions. We showed that the existence of true surface modes necessitates introducing
ABC taking into account negative density of surface energy. Maradudin and Mills were
interested in the frequency region between ωt and ωl where the surface modes occur in
the absence of spatial dispersion. In this case, it immediately follows from equation (30)
that, at least for small k-values, two exponents are real and one is purely imaginary. The
latter corresponds to the bulk polariton. The boundary conditions, however, admix a
surface mode with the bulk polariton; consequently, the energy leaks of the surface into the
bulk and it follows that the pseudo-surface mode is damped, even if the dielectric film is
lossless. In our approach, we did not attempt to study these pseudo-surface modes and we
focused on the true surface mode—that is to say, we explicitly sought for real exponential
functions in order to get real frequencies and proper vanishing at infinity. Moreover,
our model is rather different: we assume that the surface is a source of an additional
localized surface energy term while they consider that it only restricts the spatial range of
the interactions.

Finally, notice that we are able to get the usual frequency of the surface mode in a semi-
infinite dielectric medium, which, in the absence of spatial dispersion is given by

ω2
∞ = ω2

t +
4π

m(1 + ε∞)
(43)

using the notation of equations (42). This exactly corresponds to one of the roots for which
the determinant of equation (39) vanishes at k = 0. For small C, it is easy to derive from (39)
an approximate expression for the corresponding dispersion to first order in |k|. One finds

ω2 = ω2
∞ +

(
1

δx
+

1

δz

)
C

m

{
1 + i

√
1 + ε∞

4π

δzC
1/2

δx(δx + δz)

}
|k| (assuming C � δ2

x, δ
2
z ).

(44)

This root was not taken into account in section 2 since it does not provide for a solution
vanishing at infinity. Expression (44) contains a small imaginary term which can be neglected
and the linear shift

-ω =
(

1

δx
+

1

δz

)
C

2mω∞
|k| (45)
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provides a good approximation only when |kδi | � 1.
The main interest of our model concerns ferroelectric materials, because clearly in

ferroelectric films the physical properties are strongly modified in the vicinity of the surfaces:
the easiest phenomenological way to take these modifications into account consists in
introducing surface energies, as done by many authors. In this context, we have proved that
true surface polarization modes can be obtained only when the extrapolation lengths relating
to these energies are negative, while such modes are absent for positive lengths. We have
shown that in order to properly describe the polarization waves in thin films, it is necessary to
introduce two independent extrapolation lengths for each boundary surface, thus generalizing
previous studies based on a scalar order parameter.

Finally, in most of the experimental studies the static polarization in ferroelectrics is
claimed to decrease in the vicinity of the surface, which argues for positive extrapolation
lengths and, consequently, for the absence of true surface modes. But it seems that there
exist a few exceptions [18]. Moreover, a recent study [19] tends to prove that in PbTiO3

ferroelectric thin films, the polarization increases near the surface, which favours the use of
negative extrapolation lengths. The best tools for detecting the surface polarization modes are
probably optical techniques, like attenuated total-reflection or Raman scattering measurements.
Indirect information on surface polarization modes could come from their coupling to the
acoustic surface modes that could be studied using Brillouin scattering spectroscopy.
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